EconPapers    
Economics at your fingertips  
 

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

Jordan Franks and Matti Vihola

Stochastic Processes and their Applications, 2020, vol. 130, issue 10, 6157-6183

Abstract: We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis–Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.

Keywords: Asymptotic variance; Delayed-acceptance; Importance sampling; Markov chain Monte Carlo; Pseudo-marginal algorithm; Unbiased estimator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304053
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:10:p:6157-6183

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.05.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6157-6183