The parametrix method for parabolic SPDEs
Andrea Pascucci and
Antonello Pesce
Stochastic Processes and their Applications, 2020, vol. 130, issue 10, 6226-6245
Abstract:
We consider the Cauchy problem for a linear stochastic partial differential equation. By extending the parametrix method for PDEs whose coefficients are only measurable with respect to the time variable, we prove existence, regularity in Hölder classes and estimates from above and below of the fundamental solution. This result is applied to SPDEs by means of the Itô–Wentzell formula, through a random change of variables which transforms the SPDE into a PDE with random coefficients.
Keywords: Stochastic partial differential equations; Fundamental solution; Parametrix method; Kolmogorov equation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302138
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:10:p:6226-6245
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.05.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().