EconPapers    
Economics at your fingertips  
 

Moment bounds of a class of stochastic heat equations driven by space–time colored noise in bounded domains

Ngartelbaye Guerngar and Erkan Nane

Stochastic Processes and their Applications, 2020, vol. 130, issue 10, 6246-6270

Abstract: We consider the fractional stochastic heat type equation ∂∂tut(x)=−(−Δ)α∕2ut(x)+ξσ(ut(x))Ḟ(t,x),x∈D,t>0,with nonnegative bounded initial condition, where α∈(0,2], ξ>0 is the noise level, σ:R→R is a globally Lipschitz function satisfying some growth conditions and the noise term Ḟ behaves in space like the Riez kernel and is possibly correlated in time and D is the unit open ball centered at the origin in Rd. When the noise term is not correlated in time, we establish a change in the growth of the solution of these equations depending on the noise level ξ. On the other hand when the noise term behaves in time like the fractional Brownian motion with index H∈(1∕2,1), We also derive explicit bounds leading to a well-known intermittency property.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920302714
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:10:p:6246-6270

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.05.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6246-6270