Mutation timing in a spatial model of evolution
Jasmine Foo,
Kevin Leder and
Jason Schweinsberg
Stochastic Processes and their Applications, 2020, vol. 130, issue 10, 6388-6413
Abstract:
Motivated by models of cancer formation in which cells need to acquire k mutations to become cancerous, we consider a spatial population model in which the population is represented by the d-dimensional torus of side length L. Initially, no sites have mutations, but sites with i−1 mutations acquire an ith mutation at rate μi per unit area. Mutations spread to neighboring sites at rate α, so that t time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius αt. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire k mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when k=2 and when μi=μ for all i.
Keywords: Cancer; Mutations; Spatial population model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920302878
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:10:p:6388-6413
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.05.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().