Genetic composition of an exponentially growing cell population
David Cheek and
Tibor Antal
Stochastic Processes and their Applications, 2020, vol. 130, issue 11, 6580-6624
Abstract:
We study a simple model of DNA evolution in a growing population of cells. Each cell contains a nucleotide sequence which randomly mutates at cell division. Cells divide according to a branching process. Following typical parameter values in bacteria and cancer cell populations, we take the mutation rate to zero and the final number of cells to infinity. We prove that almost every site (entry of the nucleotide sequence) is mutated in only a finite number of cells, and these numbers are independent across sites. However independence breaks down for the rare sites which are mutated in a positive fraction of the population. The model is free from the popular but disputed infinite sites assumption. Violations of the infinite sites assumption are widespread while their impact on mutation frequencies is negligible at the scale of population fractions. Some results are generalised to allow for cell death, selection, and site-specific mutation rates. For illustration we estimate mutation rates in a lung adenocarcinoma.
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:11:p:6580-6624
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.06.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().