Minimizing a stochastic convex function subject to stochastic constraints and some applications
Royi Jacobovic and
Offer Kella
Stochastic Processes and their Applications, 2020, vol. 130, issue 11, 7004-7018
Abstract:
In the simplest case, we obtain a general solution to a problem of minimizing an integral of a nondecreasing right continuous stochastic process from zero to some nonnegative random variable τ, under the constraints that for some nonnegative random variable T, τ∈[0,T] almost surely and Eτ=α (or Eτ≤α) for some α. The nondecreasing process and T are allowed to be dependent. In fact a more general setup involving σ finite measures, rather than just probability measures is considered and some consequences for families of stochastic processes are given as special cases. Various applications are provided.
Keywords: Stochastic constrained minimization; Minimizing a stochastic convex function; Quadratic function with random coefficients; Clearing process; Constrained portfolio optimization; Neyman–Pearson lemma (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303173
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:11:p:7004-7018
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.07.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().