A central limit theorem for the stochastic heat equation
Jingyu Huang,
David Nualart and
Lauri Viitasaari
Stochastic Processes and their Applications, 2020, vol. 130, issue 12, 7170-7184
Abstract:
We consider the one-dimensional stochastic heat equation driven by a multiplicative space–time white noise. We show that the spatial integral of the solution from −R to R converges in total variance distance to a standard normal distribution as R tends to infinity, after renormalization. We also show a functional version of this central limit theorem.
Keywords: Stochastic heat equation; Central limit theorem; Malliavin calculus; Stein’s method (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303215
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:12:p:7170-7184
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.07.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().