Invasion and fixation of microbial dormancy traits under competitive pressure
Jochen Blath and
András Tóbiás
Stochastic Processes and their Applications, 2020, vol. 130, issue 12, 7363-7395
Abstract:
Microbial dormancy is an evolutionary trait that has emerged independently at various positions across the tree of life. It describes the ability of a microorganism to switch to a metabolically inactive state that can withstand unfavourable conditions. However, maintaining such a trait requires additional resources that could otherwise be used to increase e.g. reproductive rates. In this paper, we aim for gaining a basic understanding under which conditions maintaining a seed bank of dormant individuals provides a “fitness advantage” when facing resource limitations and competition for resources among individuals (in an otherwise stable environment). In particular, we wish to understand when an individual with a “dormancy trait” can invade a resident population lacking this trait despite having a lower reproduction rate than the residents. To this end, we follow a stochastic individual-based approach employing birth-and-death processes, where dormancy is triggered by competitive pressure for resources. In the large-population limit, we identify a necessary and sufficient condition under which a complete invasion of mutants has a positive probability. Further, we explicitly determine the limiting probability of invasion and the asymptotic time to fixation of mutants in the case of a successful invasion. In the proofs, we observe the three classical phases of invasion dynamics in the guise of Coron et al. (2017, 2019).
Keywords: Dormancy; Seed bank; Competition-induced switching; Individual-based stochastic population model; Multitype branching process; Lotka–Volterra type system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303409
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:12:p:7363-7395
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.07.018
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().