EconPapers    
Economics at your fingertips  
 

Exponents for the number of pairs of α-favorite points of a simple random walk in Z2

Izumi Okada

Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 108-138

Abstract: We investigate a problem suggested by Dembo, Peres, Rosen, and Zeitouni, which states that the growth exponent of favorite points associated with a simple random walk in Z2 coincides, on average and almost surely, with those of late points and high points associated with the discrete Gaussian free field.

Keywords: Simple random walk; Local time (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302564
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:108-138

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.01.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:1:p:108-138