Optimal importance sampling for Lévy processes
Adrien Genin and
Peter Tankov
Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 20-46
Abstract:
We develop importance sampling estimators for Monte Carlo pricing of European and path-dependent options in models driven by Lévy processes. Using results from the theory of large deviations for processes with independent increments, we compute an explicit asymptotic approximation for the variance of the pay-off under a time-dependent Esscher-style change of measure. Minimizing this asymptotic variance using convex duality, we then obtain an importance sampling estimator of the option price. We show that our estimator is logarithmically optimal among all importance sampling estimators. Numerical tests in the variance gamma model show consistent variance reduction with a small computational overhead.
Keywords: Lévy processes; Option pricing; Variance reduction; Importance sampling; Large deviations (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307580
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:20-46
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.12.019
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().