Recursive computation of invariant distributions of Feller processes
Gilles Pagès and
Clément Rey
Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 328-365
Abstract:
This paper provides a general and abstract approach to compute invariant distributions for Feller processes. More precisely, we show that the recursive algorithm presented in Lamberton and Pagès (2002) and based on simulation algorithms of stochastic schemes with decreasing steps can be used to build invariant measures for general Feller processes. We also propose various applications: Approximation of Markov Brownian diffusion stationary regimes with a Milstein or an Euler scheme and approximation of a Markov switching Brownian diffusion stationary regimes using an Euler scheme.
Keywords: Ergodic theory; Markov process; Invariant measure; Limit theorem; Stochastic approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919301498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:328-365
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().