EconPapers    
Economics at your fingertips  
 

Stationary distributions of second order stochastic evolution equations with memory in Hilbert spaces

Kai Liu

Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 366-393

Abstract: In this paper, we consider stationarity of a class of second-order stochastic evolution equations with memory, driven by Wiener processes or Lévy jump processes, in Hilbert spaces. The strategy is to formulate by reduction some first-order systems in connection with the stochastic equations under investigation. We develop asymptotic behavior of dissipative second-order equations and then apply them to time delay systems through Gearhart–Prüss–Greiner’s theorem. The stationary distribution of the system under consideration is the projection on the first coordinate of the corresponding stationary results of a lift-up stochastic system without delay on some product Hilbert space. Last, two examples of stochastic damped wave equations with memory are presented to illustrate our theory.

Keywords: Stationary solutions; Second order stochastic evolution equations; Time delay (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919301693
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:366-393

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.03.015

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:1:p:366-393