Linearized filtering of affine processes using stochastic Riccati equations
Lukas Gonon and
Josef Teichmann
Stochastic Processes and their Applications, 2020, vol. 130, issue 1, 394-430
Abstract:
We consider an affine process X which is only observed up to an additive white noise, and we ask for the law of Xt, for some t>0, conditional on all observations up to time t. This is a general, possibly high dimensional filtering problem which is not even locally approximately Gaussian, whence essentially only particle filtering methods remain as solution techniques. In this work we present an efficient numerical solution by introducing an approximate filter for which conditional characteristic functions can be calculated by solving a system of generalized Riccati differential equations depending on the observation and the process characteristics of X. The quality of the approximation can be controlled by easily observable quantities in terms of a macro location of the signal in state space. Asymptotic techniques as well as maximization techniques can be directly applied to the solutions of the Riccati equations leading to novel very tractable filtering formulas. The efficiency of the method is illustrated with numerical experiments for Cox–Ingersoll–Ross and Wishart processes, for which Gaussian approximations usually fail.
Keywords: Affine process; Filtering; Conditional law; Riccati equation; Zakai equation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491930170X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:1:p:394-430
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().