EconPapers    
Economics at your fingertips  
 

Poisson percolation on the oriented square lattice

Irina Cristali, Matthew Junge and Rick Durrett

Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 488-502

Abstract: In Poisson percolation each edge becomes open after an independent exponentially distributed time with rate that decreases in the distance from the origin. As a sequel to our work on the square lattice, we describe the limiting shape of the component containing the origin in the oriented case. We show that the density of occupied sites at height y in the cluster is close to the percolation probability in the corresponding homogeneous percolation process, and we study the fluctuations of the boundary.

Keywords: Percolation; Block construction; Oriented (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302643
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:488-502

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.01.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:2:p:488-502