Continuous-time random walk between Lévy-spaced targets in the real line
Alessandra Bianchi,
Marco Lenci and
Françoise Pène
Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 708-732
Abstract:
We consider a continuous-time random walk which is defined as an interpolation of a random walk on a point process on the real line. The distances between neighboring points of the point process are i.i.d. random variables in the normal domain of attraction of an α-stable distribution with 0<α<1. This is therefore an example of a random walk in a Lévy random medium. Specifically, it is a generalization of a process known in the physical literature as Lévy–Lorentz gas. We prove that the annealed version of the process is superdiffusive with scaling exponent 1∕(α+1) and identify the limiting process, which is not càdlàg. The proofs are based on the technique of Kesten and Spitzer for random walks in random scenery.
Keywords: Lévy–Lorentz gas; Random walk on point process; Anomalous diffusion; Lévy random medium; Stable process; Random walk in random scenery (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302527
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:708-732
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().