Posterior consistency for partially observed Markov models
Randal Douc,
Jimmy Olsson and
François Roueff
Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 733-759
Abstract:
We establish the posterior consistency for parametric, partially observed, fully dominated Markov models. The prior is assumed to assign positive probability to all neighborhoods of the true parameter, for a distance induced by the expected Kullback–Leibler divergence between the parametric family members’ Markov transition densities. This assumption is easily checked in general. In addition, we show that the posterior consistency is implied by the consistency of the maximum likelihood estimator. The result is extended to possibly improper priors and non-stationary observations. Finally, we check our assumptions on a linear Gaussian model and a well-known stochastic volatility model.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919301590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:733-759
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().