Conditional nonlinear expectations
Daniel Bartl
Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 785-805
Abstract:
Let Ω be a Polish space with Borel σ-field F and countably generated sub σ-field G⊂F. Denote by L(F) the set of all bounded F-upper semianalytic functions from Ω to the reals and by L(G) the subset of G-upper semianalytic functions. Let E(⋅|G):L(F)→L(G) be a sublinear increasing functional which leaves L(G) invariant. It is shown that there exists a G-analytic set-valued mapping PG from Ω to the set of probabilities which are concentrated on atoms of G with compact convex values such that E(X|G)(ω)=supP∈PG(ω)EP[X] if and only if E(⋅|G) is pointwise continuous from below and continuous from above on the continuous functions. Further, given another sublinear increasing functional E(⋅):L(F)→R which leaves the constants invariant, the tower property E(⋅)=E(E(⋅|G)) is characterized via a pasting property of the representing sets of probabilities, and the importance of analytic functions is explained. Finally, it is characterized when a nonlinear version of Fubini’s theorem holds true and when the product of a set of probabilities and a set of kernels is compact.
Keywords: Nonlinear expectations; Dual representation; Choquet capacity; Tower property; Dynamic programming; Mathematical finance under uncertainty (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491930167X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:785-805
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().