Bayesian estimations for diagonalizable bilinear SPDEs
Ziteng Cheng,
Igor Cialenco and
Ruoting Gong
Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 845-877
Abstract:
The main goal of this paper is to study the parameter estimation problem, using the Bayesian methodology, for the drift coefficient of some linear (parabolic) SPDEs driven by a multiplicative noise of special structure. We take the spectral approach by assuming that one path of the first N Fourier modes of the solution is continuously observed over a finite time interval. First, we show that the model is regular and fits into classical local asymptotic normality framework, and thus the MLE and the Bayesian estimators are weakly consistent, asymptotically normal, efficient, and asymptotically equivalent in the class of loss functions with polynomial growth. Secondly, and mainly, we prove a Bernstein–Von Mises type result, that strengthens the existing results in the literature, and that also allows to investigate the Bayesian type estimators with respect to a larger class of priors and loss functions than that covered by classical asymptotic theory. In particular, we prove strong consistency and asymptotic normality of Bayesian estimators in the class of loss functions of at most exponential growth. Finally, we present some numerical examples that illustrate the obtained theoretical results.
Keywords: Statistical inference for SPDEs; Bayesian statistics; Bernstein–Von Mises; Parabolic SPDE; Multiplicative noise; Stochastic evolution equations; Identification problems for SPDEs (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:845-877
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.03.020
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().