EconPapers    
Economics at your fingertips  
 

Stefan problems for reflected SPDEs driven by space–time white noise

Ben Hambly and Jasdeep Kalsi

Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 924-961

Abstract: We prove the existence and uniqueness of solutions to a one-dimensional Stefan Problem for reflected SPDEs which are driven by space–time white noise. The solutions are shown to exist until almost surely positive blow-up times. Such equations can model the evolution of phases driven by competition at an interface, with the dynamics of the shared boundary depending on the derivatives of two competing profiles at this point. The novel features here are the presence of space–time white noise; the reflection measures, which maintain positivity for the competing profiles; and a sufficient condition to make sense of the Stefan condition at the boundary. We illustrate the behaviour of the solution numerically to show that this sufficient condition is close to necessary.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304289
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:924-961

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.04.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:2:p:924-961