The heavy range of randomly biased walks on trees
Pierre Andreoletti and
Roland Diel
Stochastic Processes and their Applications, 2020, vol. 130, issue 2, 962-999
Abstract:
We focus on recurrent random walks in random environment (RWRE) on Galton–Watson trees. The range of these walks, that is the number of sites visited at some fixed time, has been studied in three different papers Andreoletti and Chen (2018), Aïdékon and de Raphélis (2017) and de Raphélis (2016). Here we study the heavy range: the number of edges frequently visited by the walk. The asymptotic behavior of this process when the number of visits is a power of the number of steps of the walk is given for all recurrent cases. It turns out that this heavy range plays a crucial role in the rate of convergence of an estimator of the environment from a single trajectory of the RWRE.
Keywords: Randomly biased random walks; Branching random walks; Range; Non-parametric estimation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:2:p:962-999
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.04.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().