Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs
Júlia Komjáthy and
Bas Lodewijks
Stochastic Processes and their Applications, 2020, vol. 130, issue 3, 1309-1367
Abstract:
In this paper we study weighted distances in scale-free spatial network models: hyperbolic random graphs, geometric inhomogeneous random graphs and scale-free percolation. In hyperbolic random graphs, n=Θ(eR∕2) vertices are sampled independently from the hyperbolic disk with radius R and two vertices are connected either when they are within hyperbolic distance R, or independently with a probability depending on the hyperbolic distance. In geometric inhomogeneous random graphs, and in scale-free percolation, each vertex is given an independent weight and location from an underlying measured metric space and Zd, respectively, and two vertices are connected independently with a probability that is a function of their distance and their weights. We assign independent and identically distributed (i.i.d.) weights to the edges of the obtained random graphs, and investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical weighted distance. In scale-free percolation, we study the weighted distance from the origin of vertex-sequences with norm tending to infinity.
Keywords: Spatial network models; Hyperbolic random graphs; Scale-free property; Small world property; Typical distances; First passage percolation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918301601
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:3:p:1309-1367
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.04.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().