General tax structures for a Lévy insurance risk process under the Cramér condition
Philip S. Griffin
Stochastic Processes and their Applications, 2020, vol. 130, issue 3, 1368-1387
Abstract:
We investigate the Lévy insurance risk model with tax under Cramér’s condition. A direct analogue of Cramér’s estimate for the probability of ruin in this model is obtained, together with the asymptotic distribution, conditional on ruin occurring, of several variables of interest related to ruin including the surplus immediately prior to ruin (undershoot) and shortfall at ruin (overshoot). We also compute the present value of all tax paid conditional on ruin occurring. The proof involves first transferring results from the model with no tax to the reflected process, and from there to the model with tax.
Keywords: Lévy insurance risk process; Cramér condition; Reflected process; Tax structures; First passage time; Overshoot (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302953
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:3:p:1368-1387
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.05.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().