EconPapers    
Economics at your fingertips  
 

Existence of infinite Viterbi path for pairwise Markov models

Jüri Lember and Joonas Sova

Stochastic Processes and their Applications, 2020, vol. 130, issue 3, 1388-1425

Abstract: For hidden Markov models one of the most popular estimates of the hidden chain is the Viterbi path — the path maximizing the posterior probability. We consider a more general setting, called the pairwise Markov model, where the joint process consisting of finite-state hidden regime and observation process is assumed to be a Markov chain. We prove that under some conditions it is possible to extend the Viterbi path to infinity for almost every observation sequence which in turn enables to define an infinite Viterbi decoding of the observation process, called the Viterbi process. This is done by constructing a block of observations, called a barrier, which ensures that the Viterbi path goes through a given state whenever this block occurs in the observation sequence.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:3:p:1388-1425

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.05.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1388-1425