EconPapers    
Economics at your fingertips  
 

Heavy traffic limit for the workload plateau process in a tandem queue with identical service times

H. Christian Gromoll, Bryce Terwilliger and Bert Zwart

Stochastic Processes and their Applications, 2020, vol. 130, issue 3, 1435-1460

Abstract: We consider a two-node tandem queueing network in which the upstream queue has renewal arrivals with generally distributed service times, and each job reuses its upstream service requirement when moving to the downstream queue. Both servers employ the first-in-first-out policy. The reuse of service times creates strong dependence at the second queue, making its workload difficult to analyze. To investigate the evolution of workload in the second queue, we introduce and study a process M, called the plateau process, which encodes most of the information in the workload process. We focus on the case of infinite-variance service times and show that under appropriate scaling, workload in the first queue converges, and although the workload in the second queue does not converge, the plateau process does converge to a limit M∗ that is a certain function of two independent Lévy processes. Using excursion theory, we derive some useful properties of M∗ and compare a time changed version of it to a limit process derived in previous work.

Keywords: Tandem queue; Infinite variance; Process limit; Lévy process; Continuous mapping; Excursion theory (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305362
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:3:p:1435-1460

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.05.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1435-1460