Stochastic representation of solution to nonlocal-in-time diffusion
Qiang Du,
Lorenzo Toniazzi and
Zhi Zhou
Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2058-2085
Abstract:
The aim of this paper is to derive a stochastic representation of the solution to a nonlocal-in-time evolution equation (with a historical initial condition), which serves a bridge between normal diffusion and anomalous diffusion. We first derive the Feynman–Kac formula by reformulating the original model into an auxiliary Caputo-type evolution equation with a specific forcing term subject to certain smoothness and compatibility conditions. After that, we confirm that the stochastic formula also provides the solution in the weak sense even though the problem data is nonsmooth. Finally, numerical experiments are presented to illustrate the theoretical results and the application of the stochastic formula.
Keywords: Nonlocal evolution; Historical initial condition; Feynman–Kac formula (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306562
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2058-2085
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.06.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().