A CLT for linear spectral statistics of large random information-plus-noise matrices
Marwa Banna,
Jamal Najim and
Jianfeng Yao
Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2250-2281
Abstract:
Consider a matrix Yn=σnXn+An, where σ>0 and Xn=(xijn) is a N×n random matrix with i.i.d. real or complex standardized entries and An is a N×n deterministic matrix with bounded spectral norm. The fluctuations of the linear spectral statistics of the eigenvalues: Tracef(YnYn∗)=∑i=1Nf(λi),(λi)eigenvalues ofYnYn∗,are shown to be Gaussian, in the case where f is a smooth function of class C3 with bounded support, and in the regime where both dimensions of matrix Yn go to infinity at the same pace. The CLT is expressed in terms of vanishing Lévy–Prokhorov distance between the linear statistics’ distribution and a centered Gaussian probability distribution, the variance of which depends upon N and n and may not converge. The proof combines ideas from [2,18] and [32].
Keywords: Large random matrices; Linear statistics of the eigenvalues; Central limit theorem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2250-2281
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.06.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().