EconPapers    
Economics at your fingertips  
 

Asymptotic error distribution for the Euler scheme with locally Lipschitz coefficients

Philip Protter, Lisha Qiu and Jaime San Martin

Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2296-2311

Abstract: In traditional works on numerical schemes for solving stochastic differential equations (SDEs), the globally Lipschitz assumption is often assumed to ensure different types of convergence. In practice, this is often too strong a condition. Brownian motion driven SDEs used in applications sometimes have coefficients which are only Lipschitz on compact sets, but the paths of the SDE solutions can be arbitrarily large. In this paper, we prove convergence in probability and a weak convergence result under a less restrictive assumption, that is, locally Lipschitz and with no finite time explosion. We prove if a numerical scheme converges in probability uniformly on any compact time set (UCP) with a certain rate under a global Lipschitz condition, then the UCP with the same rate holds when a globally Lipschitz condition is replaced with a locally Lipschitz plus no finite explosion condition. For the Euler scheme, weak convergence of the error process is also established. The main contribution of this paper is the proof of n weak convergence of the normalized error process and the limit process is also provided. We further study the boundedness of the second moments of the weak limit process and its running supremum under both global Lipschitz and locally Lipschitz conditions.

Keywords: Stochastic differential equation; Locally Lipschitz; Convergence in probability; Euler scheme; Normalized error process; Weak convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2296-2311

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.07.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2296-2311