Asymptotic error distribution for the Euler scheme with locally Lipschitz coefficients
Philip Protter,
Lisha Qiu and
Jaime San Martin
Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2296-2311
Abstract:
In traditional works on numerical schemes for solving stochastic differential equations (SDEs), the globally Lipschitz assumption is often assumed to ensure different types of convergence. In practice, this is often too strong a condition. Brownian motion driven SDEs used in applications sometimes have coefficients which are only Lipschitz on compact sets, but the paths of the SDE solutions can be arbitrarily large. In this paper, we prove convergence in probability and a weak convergence result under a less restrictive assumption, that is, locally Lipschitz and with no finite time explosion. We prove if a numerical scheme converges in probability uniformly on any compact time set (UCP) with a certain rate under a global Lipschitz condition, then the UCP with the same rate holds when a globally Lipschitz condition is replaced with a locally Lipschitz plus no finite explosion condition. For the Euler scheme, weak convergence of the error process is also established. The main contribution of this paper is the proof of n weak convergence of the normalized error process and the limit process is also provided. We further study the boundedness of the second moments of the weak limit process and its running supremum under both global Lipschitz and locally Lipschitz conditions.
Keywords: Stochastic differential equation; Locally Lipschitz; Convergence in probability; Euler scheme; Normalized error process; Weak convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2296-2311
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.07.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().