EconPapers    
Economics at your fingertips  
 

Malliavin calculus for non-colliding particle systems

Nobuaki Naganuma and Dai Taguchi

Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2384-2406

Abstract: In this paper, we use Malliavin calculus to show the existence and continuity of density functions of d-dimensional non-colliding particle systems such as hyperbolic particle systems and Dyson Brownian motion with smooth drift. For this purpose, we apply results proved by Florit and Nualart (1995) and Naganuma (2013) on locally non-degenerate Wiener functionals.

Keywords: Dyson Brownian motion; Hyperbolic particle system; Non-colliding particle system; Malliavin calculus; Non-degeneracy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304156
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2384-2406

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.07.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2384-2406