EconPapers    
Economics at your fingertips  
 

A reduction principle for the critical values of random spherical harmonics

Valentina Cammarota and Domenico Marinucci

Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2433-2470

Abstract: We study here the random fluctuations in the number of critical points with values in an interval I⊂R for Gaussian spherical eigenfunctions fℓ, in the high energy regime where ℓ→∞. We show that these fluctuations are asymptotically equivalent to the centred L2-norm of fℓ times the integral of a (simple and fully explicit) function over the interval under consideration. We discuss also the relationships between these results and the asymptotic behaviour of other geometric functionals on the excursion sets of random spherical harmonics.

Keywords: Reduction principle; Critical points; Wiener-Chaos expansion; Spherical harmonics; Quantitative central limit theorem; Berry’s cancellation phenomenon (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830228X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2433-2470

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.07.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2433-2470