EconPapers    
Economics at your fingertips  
 

From infinite urn schemes to self-similar stable processes

Olivier Durieu, Gennady Samorodnitsky and Yizao Wang

Stochastic Processes and their Applications, 2020, vol. 130, issue 4, 2471-2487

Abstract: We investigate the randomized Karlin model with parameter β∈(0,1), which is based on an infinite urn scheme. It has been shown before that when the randomization is bounded, the so-called odd-occupancy process scales to a fractional Brownian motion with Hurst index β∕2∈(0,1∕2). We show here that when the randomization is heavy-tailed with index α∈(0,2), then the odd-occupancy process scales to a (β∕α)-self-similar symmetric α-stable process with stationary increments.

Keywords: Infinite urn scheme; Regular variation; Functional central limit theorem; Self-similar process; Stable process (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:4:p:2471-2487

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.07.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2471-2487