An inequality connecting entropy distance, Fisher Information and large deviations
Bastian Hilder,
Mark A. Peletier,
Upanshu Sharma and
Oliver Tse
Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 2596-2638
Abstract:
In this paper we introduce a new generalisation of the relative Fisher Information for Markov jump processes on a finite or countable state space, and prove an inequality which connects this object with the relative entropy and a large deviation rate functional. In addition to possessing various favourable properties, we show that this generalised Fisher Information converges to the classical Fisher Information in an appropriate limit. We then use this generalised Fisher Information and the aforementioned inequality to qualitatively study coarse-graining problems for jump processes on discrete spaces.
Keywords: Markov jump process; Relative entropy; Fisher Information; Large deviations (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919300687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:2596-2638
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.07.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().