EconPapers    
Economics at your fingertips  
 

Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization

B. Acciaio, J. Backhoff-Veraguas and A. Zalashko

Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 2918-2953

Abstract: The martingale part in the semimartingale decomposition of a Brownian motion with respect to an enlargement of its filtration, is an anticipative mapping of the given Brownian motion. In analogy to optimal transport theory, we define causal transport plans in the context of enlargement of filtrations, as the Kantorovich counterparts of the aforementioned non-adapted mappings. We provide a necessary and sufficient condition for a Brownian motion to remain a semimartingale in an enlarged filtration, in terms of certain minimization problems over sets of causal transport plans. The latter are also used in order to give robust transport-based estimates for the value of having additional information, as well as model sensitivity with respect to the reference measure, for the classical stochastic optimization problems of utility maximization and optimal stopping.

Keywords: Causal transport plan; Semimartingale decomposition; Filtration enlargement; Stochastic optimization; Robust bounds; Value of information (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:2918-2953

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.08.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:5:p:2918-2953