EconPapers    
Economics at your fingertips  
 

Penalization of Galton–Watson processes

Romain Abraham and Pierre Debs

Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 3095-3119

Abstract: We apply the penalization technique introduced by Roynette, Vallois, Yor for Brownian motion to Galton–Watson processes with a penalizing function of the form P(x)sx where P is a polynomial of degree p and s∈[0,1]. We prove that the limiting martingales obtained by this method are most of the time classical ones, except in the super-critical case for s=1 (or s→1) where we obtain new martingales. If we make a change of probability measure with this martingale, we obtain a multi-type Galton–Watson tree with p distinguished infinite spines.

Keywords: Galton–Watson trees; Penalization; Conditioning (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304319
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:3095-3119

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.09.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:5:p:3095-3119