Penalization of Galton–Watson processes
Romain Abraham and
Pierre Debs
Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 3095-3119
Abstract:
We apply the penalization technique introduced by Roynette, Vallois, Yor for Brownian motion to Galton–Watson processes with a penalizing function of the form P(x)sx where P is a polynomial of degree p and s∈[0,1]. We prove that the limiting martingales obtained by this method are most of the time classical ones, except in the super-critical case for s=1 (or s→1) where we obtain new martingales. If we make a change of probability measure with this martingale, we obtain a multi-type Galton–Watson tree with p distinguished infinite spines.
Keywords: Galton–Watson trees; Penalization; Conditioning (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:3095-3119
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.09.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().