Optimal switching problems with an infinite set of modes: An approach by randomization and constrained backward SDEs
Marco Fuhrman and
Marie-Amélie Morlais
Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 3120-3153
Abstract:
We address a general optimal switching problem over finite horizon for a stochastic system described by a differential equation driven by Brownian motion. The main novelty is the fact that we allow for infinitely many modes (or regimes, i.e. the possible values of the piecewise-constant control process). We allow all the given coefficients in the model to be path-dependent, that is, their value at any time depends on the past trajectory of the controlled system. The main aim is to introduce a suitable (scalar) backward stochastic differential equation (BSDE), with a constraint on the martingale part, that allows to give a probabilistic representation of the value function of the given problem. This is achieved by randomization of control, i.e. by introducing an auxiliary optimization problem which has the same value as the starting optimal switching problem and for which the desired BSDE representation is obtained. In comparison with the existing literature we do not rely on a system of reflected BSDE nor can we use the associated Hamilton–Jacobi–Bellman equation in our non-Markovian framework.
Keywords: Stochastic optimal switching; Backward SDEs; Randomization of controls (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:3120-3153
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.09.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().