EconPapers    
Economics at your fingertips  
 

An approximation scheme for quasi-stationary distributions of killed diffusions

Andi Q. Wang, Gareth O. Roberts and David Steinsaltz

Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 3193-3219

Abstract: In this paper we study the asymptotic behavior of the normalized weighted empirical occupation measures of a diffusion process on a compact manifold which is killed at a smooth rate and then regenerated at a random location, distributed according to the weighted empirical occupation measure. We show that the weighted occupation measures almost surely comprise an asymptotic pseudo-trajectory for a certain deterministic measure-valued semiflow, after suitably rescaling the time, and that with probability one they converge to the quasi-stationary distribution of the killed diffusion. These results provide theoretical justification for a scalable quasi-stationary Monte Carlo method for sampling from Bayesian posterior distributions.

Keywords: Asymptotic pseudo-trajectory; Killed diffusion; Quasi-stationary distribution; Quasi-stationary Monte Carlo method; Stochastic approximation (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304332
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:3193-3219

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.09.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:5:p:3193-3219