Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions
Jonas M. Tölle
Stochastic Processes and their Applications, 2020, vol. 130, issue 5, 3220-3248
Abstract:
We prove existence and uniqueness of solutions to a nonlinear stochastic evolution equation on the d-dimensional torus with singular p-Laplace-type or total variation flow-type drift with general sublinear doubling nonlinearities and Gaussian gradient Stratonovich noise with divergence-free coefficients. Assuming a weak defective commutator bound and a curvature-dimension condition, the well-posedness result is obtained in a stochastic variational inequality setup by using resolvent and Dirichlet form methods and an approximative Itô-formula.
Keywords: Nonlinear Stratonovich stochastic partial differential equation; Stochastic variational inequality; Singular stochastic p-Laplace evolution equation; Multiplicative gradient Stratonovich noise; Defective commutator bound; Bakry-Émery curvature-dimension condition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:5:p:3220-3248
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.09.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().