# Convergence of metric two-level measure spaces

*Roland Meizis*

*Stochastic Processes and their Applications*, 2020, vol. 130, issue 6, 3499-3539

**Abstract:**
We extend the notion of metric measure spaces to so-called metric two-level measure spaces (m2m spaces): An m2m space (X,r,ν) is a Polish metric space (X,r) equipped with a two-level measure ν∈Mf(Mf(X)), i.e. a finite measure on the set of finite measures on X. We introduce a topology on the set of (equivalence classes of) m2m spaces induced by certain test functions (i.e. the initial topology with respect to these test functions) and show that this topology is Polish by providing a complete metric. The framework introduced in this article is motivated by possible applications in biology. It is well suited for modeling the random evolution of the genealogy of a population in a hierarchical system with two levels, for example, host–parasite systems or populations which are divided into colonies. As an example we apply our theory to construct a random m2m space modeling the genealogy of a nested Kingman coalescent.

**Keywords:** Metric two-level measure spaces; Metric measure spaces; Two-level measures; Nested Kingman coalescent measure tree; Two-level Gromov-weak topology (search for similar items in EconPapers)

**Date:** 2020

**References:** View complete reference list from CitEc

**Citations:** Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0304414918301893

Full text for ScienceDirect subscribers only

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3499-3539

**Ordering information:** This journal article can be ordered from

http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional

https://shop.elsevie ... _01_ooc_1&version=01

**DOI:** 10.1016/j.spa.2019.10.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by *T. Mikosch*

More articles in Stochastic Processes and their Applications from Elsevier

Bibliographic data for series maintained by Haili He ().