EconPapers    
Economics at your fingertips  
 

Heat kernel for non-local operators with variable order

Xin Chen, Zhen-Qing Chen and Jian Wang

Stochastic Processes and their Applications, 2020, vol. 130, issue 6, 3574-3647

Abstract: Let α(x) be a measurable function taking values in [α1,α2] for 0<α1⩽α2<2, and κ(x,z) be a positive measurable function that is symmetric in z and bounded between two positive constants. Under uniform Hölder continuous assumptions on α(x) and x↦κ(x,z), we obtain existence, upper and lower bounds, and regularity properties of the heat kernel associated with the following non-local operator of variable order Lf(x)=∫Rd(f(x+z)−f(x)−〈∇f(x),z〉1{|z|⩽1})κ(x,z)|z|d+α(x)dz. In particular, we show that the operator L generates a conservative Feller process on Rd having strong Feller property, which is usually assumed a priori in the literature to study analytic properties of L via probabilistic approaches. Our near-diagonal estimates and lower bound estimates of the heat kernel depend on the local behavior of index function α(x). When α(x)≡α∈(0,2), our results recover some results by Chen and Kumagai (2003) and Chen and Zhang (2016).

Keywords: Non-local operator with variable order; Stable-like process; Heat kernel; Levi’s method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303072
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3574-3647

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.10.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3574-3647