Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions
Archil Gulisashvili
Stochastic Processes and their Applications, 2020, vol. 130, issue 6, 3648-3686
Abstract:
In this paper, we establish sample path large and moderate deviation principles for log-price processes in Gaussian stochastic volatility models, and study the asymptotic behavior of exit probabilities, call pricing functions, and the implied volatility. In addition, we prove that if the volatility function in an uncorrelated Gaussian model grows faster than linearly, then, for the asset price process, all the moments of order greater than one are infinite. Similar moment explosion results are obtained for correlated models.
Keywords: Gaussian stochastic volatility models; Volterra type models; Sample path large and moderate deviations; Central limit regime; Moment explosions; Implied volatility asymptotics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919300547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3648-3686
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.10.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().