EconPapers    
Economics at your fingertips  
 

A note on Herglotz’s theorem for time series on function spaces

Anne van Delft and Michael Eichler

Stochastic Processes and their Applications, 2020, vol. 130, issue 6, 3687-3710

Abstract: In this article, we prove Herglotz’s theorem for Hilbert-valued time series. This requires the notion of an operator-valued measure, which we shall make precise for our setting. Herglotz’s theorem for functional time series allows to generalize existing results that are central to frequency domain analysis on the function space. In particular, we use this result to prove the existence of a functional Cramér representation of a large class of processes, including those with jumps in the spectral distribution and long-memory processes. We furthermore obtain an optimal finite dimensional reduction of the time series under weaker assumptions than available in the literature. The results of this paper therefore enable Fourier analysis for processes of which the spectral density operator does not necessarily exist.

Keywords: Functional data analysis; Spectral analysis; Time series (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830752X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3687-3710

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.10.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3687-3710