EconPapers    
Economics at your fingertips  
 

Analysis of a micro–macro acceleration method with minimum relative entropy moment matching

Tony Lelièvre, Giovanni Samaey and Przemysław Zieliński

Stochastic Processes and their Applications, 2020, vol. 130, issue 6, 3753-3801

Abstract: We analyse convergence of a micro–macro acceleration method for the simulation of stochastic differential equations with time-scale separation. The method alternates short bursts of path simulations with the extrapolation of macroscopic state variables forward in time. After extrapolation, a new microscopic state is constructed, consistent with the extrapolated macroscopic state, that minimises the perturbation caused by the extrapolation in a relative entropy sense. We study local errors and numerical stability of the method to prove its convergence to the full microscopic dynamics when the extrapolation time step tends to zero and the number of macroscopic state variables tends to infinity.

Keywords: Micro–macro simulations; Entropy optimisation; Stiff stochastic differential equations; Kullback–Leibler divergence; Weak convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919306039
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3753-3801

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.10.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3753-3801