EconPapers    
Economics at your fingertips  
 

Metrization of the Gromov–Hausdorff (-Prokhorov) topology for boundedly-compact metric spaces

Ali Khezeli

Stochastic Processes and their Applications, 2020, vol. 130, issue 6, 3842-3864

Abstract: In this work, it is proved that the set of boundedly-compact pointed metric spaces, equipped with the Gromov–Hausdorff topology, is a Polish space. The same is done for the Gromov–Hausdorff–Prokhorov topology. This extends previous works which consider only length spaces or discrete metric spaces. This is a measure theoretic requirement to study random boundedly-compact pointed (measured) metric spaces, which is the main motivation of this work. In particular, this provides a unified framework for studying random graphs, random discrete spaces and random length spaces. The proofs use a generalization of the classical theorem of Strassen, presented here, which is of independent interest. This generalization provides an equivalent formulation of the Prokhorov distance of two finite measures, having possibly different total masses, in terms of approximate couplings. A Strassen-type result is also provided for the Gromov–Hausdorff–Prokhorov metric for compact spaces.

Keywords: Gromov–Hausdorff metric; Gromov–Hausdorff convergence; Gromov–Hausdorff–Prokhorov metric; Boundedly-compact; Strassen’s theorem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:6:p:3842-3864

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.11.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3842-3864