Invariance principles for random walks in cones
Jetlir Duraj () and
Vitali Wachtel
Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 3920-3942
Abstract:
We prove invariance principles for a multidimensional random walk conditioned to stay in a cone. Our first result concerns convergence towards the Brownian meander in the cone. Furthermore, we prove functional convergence of h-transformed random walk to the corresponding h-transform of the Brownian motion. Finally, we prove an invariance principle for bridges of a random walk in a cone.
Keywords: Random walk; Exit time; Invariance principle (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305696
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:3920-3942
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.11.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().