EconPapers    
Economics at your fingertips  
 

Law of two-sided exit by a spectrally positive strictly stable process

Zhiyi Chi

Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 3967-3989

Abstract: For a spectrally positive strictly stable process with index in (1, 2), we obtain (i) the sub-probability density of its first exit time from an interval by hitting the interval’s lower end before jumping over its upper end, and (ii) the joint distribution of the time, undershoot, and jump of the process when it makes the first exit the other way around. The density of the exit time is expressed in terms of the roots of a Mittag-Leffler function. Some theoretical applications of the results are given.

Keywords: Two-sided exit problem; Lévy process; stable; spectrally positive; Mittag-Leffler (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918302941
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:3967-3989

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.11.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:3967-3989