Random walks in a strongly sparse random environment
Dariusz Buraczewski,
Piotr Dyszewski,
Alexander Iksanov and
Alexander Marynych
Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 3990-4027
Abstract:
The integer points (sites) of the real line are marked by the positions of a standard random walk with positive integer jumps. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the random walk are supported by a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity and assuming additionally that the distribution tail of the jumps is regularly varying at infinity we consider a nearest neighbor random walk on the set of integers having jumps ±1 with probability 1∕2 at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2019) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.
Keywords: Branching process in a random environment with immigration; Convergence in distribution; Random walk in a random environment; Sparse random environment (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919302224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:3990-4027
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.11.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().