EconPapers    
Economics at your fingertips  
 

Necessary conditions for stochastic optimal control problems in infinite dimensions

Hélène Frankowska and Xu Zhang

Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4081-4103

Abstract: The purpose of this paper is to establish the first and second order necessary conditions for stochastic optimal controls in infinite dimensions. The control system is governed by a stochastic evolution equation, in which both drift and diffusion terms may contain the control variable and the set of controls is allowed to be nonconvex. Only one adjoint equation is introduced to derive the first order necessary optimality condition either by means of the classical variational analysis approach or, under an additional assumption, by using differential calculus of set-valued maps. More importantly, in order to avoid the essential difficulty with the well-posedness of higher order adjoint equations, using again the classical variational analysis approach, only the first and the second order adjoint equations are needed to formulate the second order necessary optimality condition, in which the solutions to the second order adjoint equation are understood in the sense of the relaxed transposition.

Keywords: Stochastic optimal control; First and second order necessary optimality conditions; Variational equation; Adjoint equation; Transposition solution; Maximum principle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307592
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4081-4103

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.11.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4081-4103