EconPapers    
Economics at your fingertips  
 

Geometric ergodicity of affine processes on cones

Eberhard Mayerhofer, Robert Stelzer and Johanna Vestweber

Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4141-4173

Abstract: For affine processes on finite-dimensional cones, we give criteria for geometric ergodicity — that is exponentially fast convergence to a unique stationary distribution. Ergodic results include both the existence of exponential moments of the limiting distribution, where we exploit the crucial affine property, and finite moments, where we invoke the polynomial property of affine semigroups. Furthermore, we elaborate sufficient conditions for aperiodicity and irreducibility. Our results are applicable to Wishart processes with jumps on the positive semidefinite matrices, continuous-time branching processes with immigration in high dimensions, and classical term-structure models for credit and interest rate risk.

Keywords: Affine process; Geometric ergodicity; Feller process; Foster–Lyapunov drift condition; Harris recurrence; Wishart process (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918306690
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4141-4173

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.11.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4141-4173