Existence of a density of the 2-dimensional Stochastic Navier Stokes Equation driven by Lévy processes or fractional Brownian motion
E. Hausenblas and
Paul A. Razafimandimby
Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4174-4205
Abstract:
In this article we are interested in the regularity properties of the probability measure induced by the solution process by a Lévy process or a fractional Brownian motion driven Navier–Stokes equations on the two-dimensional torus T. We mainly investigate under which conditions on the characteristic measure of the Lévy process or the Hurst parameter of the fractal Brownian motion the law of the projection of u(t) onto any finite dimensional F⊂L2(T) is absolutely continuous with respect to the Lebesgue measure on F.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300838
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4174-4205
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.12.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().