EconPapers    
Economics at your fingertips  
 

On a maximal inequality and its application to SDEs with singular drift

Xuan Liu and Guangyu Xi

Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4275-4293

Abstract: In this paper we present a Doob type maximal inequality for stochastic processes satisfying the conditional increment control condition. If we assume, in addition, that the margins of the process have uniform exponential tail decay, we prove that the supremum of the process decays exponentially in the same manner. Then we apply this result to the construction of the almost everywhere stochastic flow to stochastic differential equations with singular time dependent divergence-free drift.

Keywords: Doob’s maximal inequality; Kolmogorov’s criteria; Divergence-free; Aronson estimate (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303801
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4275-4293

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.12.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4275-4293