On a maximal inequality and its application to SDEs with singular drift
Xuan Liu and
Guangyu Xi
Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4275-4293
Abstract:
In this paper we present a Doob type maximal inequality for stochastic processes satisfying the conditional increment control condition. If we assume, in addition, that the margins of the process have uniform exponential tail decay, we prove that the supremum of the process decays exponentially in the same manner. Then we apply this result to the construction of the almost everywhere stochastic flow to stochastic differential equations with singular time dependent divergence-free drift.
Keywords: Doob’s maximal inequality; Kolmogorov’s criteria; Divergence-free; Aronson estimate (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4275-4293
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2019.12.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().