Limit theorems for a class of critical superprocesses with stable branching
Yan-Xia Ren,
Renming Song and
Zhenyao Sun
Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4358-4391
Abstract:
We consider a critical superprocess {X;Pμ} with general spatial motion and spatially dependent stable branching mechanism with lowest stable index γ0>1. We first show that, under some conditions, Pμ(|Xt|≠0) converges to 0 as t→∞ and is regularly varying with index (γ0−1)−1. Then we show that, for a large class of non-negative testing functions f, the distribution of {Xt(f);Pμ(⋅|‖Xt‖≠0)}, after appropriate rescaling, converges weakly to a positive random variable z(γ0−1) with Laplace transform E[e−uz(γ0−1)]=1−(1+u−(γ0−1))−1∕(γ0−1).
Keywords: Critical superprocess; Stable branching; Scaling limit; Intrinsic ultracontractivity; Regular variation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303223
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4358-4391
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.01.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().